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ABSTRACT 1 

Automated vehicles (AV) may enter the consumer market with various stages of automation in 2 
ten years or even sooner. Meanwhile, regional planning agencies are envisioning plans for time 3 

horizons out to 2040 and beyond.  To help decision-makers understand the impact of this 4 
technology on regional plans, modeling tools should anticipate automated vehicles’ effect on 5 
transportation networks and traveler choices. This research uses the Seattle region’s activity-6 
based travel model to test a range of travel behavior impacts from AV technology development. 7 
The existing model was not originally designed with automated vehicles in mind, so some 8 

modifications to the model assumptions are described in areas of roadway capacity, user values 9 
of time, and parking costs. Larger structural model changes are not yet considered.  Results of 10 
four scenario tests show that improvements in roadway capacity and in the quality of the driving 11 
trip may lead to large increases in vehicle-miles traveled, while a shift to per-mile usage charges 12 

may counteract that trend. Travel models will need to have major improvements in the coming 13 
years, especially with regard to shared-ride, taxi modes, and the effect of multitasking 14 

opportunities, to better anticipate the arrival of this technology.  15 
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INTRODUCTION 16 

Automated vehicles (AVs) are under development by major car manufacturers and technology 17 
firms, and may enter the consumer market with various stages of automation in ten years or even 18 

sooner (KPMG and CAR 2014). Meanwhile, regional planning agencies are envisioning plans 19 
for time horizons out to 2040 and beyond. Within the time horizon of the plans, AVs may 20 
significantly alter transportation choices, impacting regions’ planning goals. To understand 21 
future travel patterns, modeling tools should anticipate automated vehicles’ impact on 22 
transportation networks and traveler choices. 23 

 24 
In the latest long-range regional plan, the Puget Sound Regional Council (PSRC) (2010) 25 
established goals to guide the region toward healthy growth, including: 26 
 27 

 improving safety and mobility, 28 
 reducing greenhouse gas emissions and congestion, 29 

 focusing growth in already urbanized areas to create walkable, transit oriented 30 
communities,  31 

 preventing urbanization of rural and resource lands, and 32 

 helping people live happier and more active lives. 33 
 34 

These goals reflect statewide legislation from Washington State’s Growth Management Act as 35 
well as federal aims outlined in Moving Ahead for Progress in the 21st Century Act (MAP-21). 36 
Self-driving cars could impact all these focus areas, so anticipating their adoption is imperative 37 

to maintaining timely and informed regional plans.  38 
 39 

This paper considers modeling techniques to measure the impacts of self-driving cars using an 40 

activity-based model, and explores how modeling capabilities must be improved to better answer 41 

questions related to this new technology. Since there is so much uncertainty around the future of 42 
AVs, several model scenarios are created to consider broad impacts of self-driving vehicle 43 

adoption in the Puget Sound region of Washington State. These scenarios clearly stretch current 44 
model capabilities, and depend on highly uncertain inputs. However, it is still useful to test the 45 
existing models in order to start a conversation with planners and decision-makers, as well as to 46 
highlight shortcomings in our existing methods to modelers. The aim of this paper is not to 47 

accurately predict the future impacts of automated vehicles, but rather to develop appropriate 48 
ways of evaluating a range of potential impacts on regional transportation.  49 
 50 

BACKGROUND 51 

Automated vehicles could drastically change traffic flow, up-ending long-held assumptions 52 
about maximum roadway capacity and volume-delay functions. Vehicle-to-vehicle coordination 53 

systems allow cars to travel with much shorter headways, enabling higher volumes at high 54 
speeds. If AVs also reduce collision rates, non-recurrent congestion would decrease as well. 55 
FHWA (2013) estimates that 60% of all congestion is attributed to non-recurring sources such as 56 
crashes and other vehicle-roadway mishaps, suggesting that a safer, more coordinated fleet could 57 
reduce delay and support more consistent travel times. Even partially-autonomous vehicle 58 
capabilities may increase roadway capacity. Tientrakool et al.(2011) estimate that highway 59 
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capacity could be increased by 43% using vehicle sensors and up to 273% with vehicle-to-60 

vehicle communications. Shladover et al. (2013) estimate that vehicle-to-vehicle coordination of 61 
adaptive cruise control could increase capacity by 21% with 50% of all vehicles using the 62 
technology, or up to 80% capacity increase with a 100% coordinated vehicle fleet, based on 63 

empirical testing. Fernandes and Nunes (2012) estimate that capacity could increase as much as 64 
five-fold for platoons traveling around 45 miles per hour. More efficient fleets could be 65 
represented as additional roadway capacity, which can be represented very easily in existing 66 
travel models. 67 
 68 

To date, few regional-scale modeling efforts have addressed potential impacts of AVs. Gucwa 69 
(2014) tested some capacity-altering assumptions on regional VMT in the San Francisco Bay 70 
Area using the Metropolitan Transportation Commission’s activity-based travel model. Gucwa’s 71 
results suggest that doubling capacity only increases region-wide VMT by around 1%, but does 72 

significantly reduce peak congestion. Gucwa found that changing users’ values of time had much 73 
more impact on VMT than capacity changes, and estimated the Bay Area’s VMT would increase 74 

between 8% and 24%, depending on how automated vehicles users’ time values changed.  75 
 76 

Gucwa’s findings suggest that changes in user behavior may have large effects on regional travel 77 
as vehicle fleets become more automated. Gucwa, and many others, assume that being driven by 78 
a robotic vehicle will eventually be less stressful than piloting one’s self through concentration-79 

demanding and chaotic congestion, thus making travelers less averse to in-vehicle time. Rather 80 
than focusing on complicated navigation skills, travelers could spend time relaxing or working, 81 

perhaps reducing the disutility placed on travel time. Since AVs are a new technology, the exact 82 
influence of such attributes relative to travel time in these vehicles is unknown. However, these 83 
factors are similar in nature to non-traditional transit attributes that often contribute to both mode 84 

choice and route choice (Outwater et al. 2013). These attributes, such as comfort, reliability and 85 

amenities like Wi-Fi, have proven difficult to explicitly represent in travel models. Instead, 86 
through empirical methods, travel models can represent the utility associated with these 87 
attributes through adjustments in travel time. Similarly, we can attempt to model the behavioral 88 

changes that may arise from AVs by making assumptions about the equivalent perceived travel 89 
time reductions that may result from ancillary factors.   90 

 91 
Many other aspects of AV technology may affect traveler behavior as well, including costs, 92 

vehicle availability and ownership, and parking price and location. Since more technical 93 
infrastructure will be required to operate and manage self-driving cars, usage could more easily 94 
be tracked per mile, making VMT-based taxes and pay-as-you-drive insurance policies more 95 
realistic policy tools for personal vehicles. This pricing strategy could reduce overall VMT, as 96 
frequently-forgotten fixed costs such as insurance, licensing, and registration fees are replaced 97 

with more transparent marginal costs for every trip (Parry and Small 2005, Nichols and 98 
Kockelman 2014). Shared autonomous vehicles would likely offer per-mile rates as well, 99 

echoing existing business models from hired rideshare services like Uber and Lyft. Shared AVs 100 
may become a popular service, since on-demand automated pickups would reduce the need to 101 
own and thus store a personal vehicle. Depending on the technology’s development, many could 102 
find owning a personal driverless vehicle too costly, relying on occasional pickups by shared 103 
automated vehicles.  104 
 105 
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AVs may reduce the need for close-by parking as vehicles could conceivably self-park in 106 

cheaper, more distance parking locations (Fagnant and Kockelman 2013). This behavior could 107 
alter fixed costs at trip ends, reducing driving costs that lead to mode shifts or more automobile 108 
travel to areas with high parking cost. Aside from altering destination choices and mode choice, 109 

this behavior may also increase VMT as empty vehicles are sent for pickup and parking by 110 
owners or users in a shared system. Some of these impacts can be easily modeled by simply 111 
reducing parking costs in all zones, but accounting for increased VMT requires more knowledge 112 
on parking cost, location, and trip tour timing.     113 
 114 

VMT will likely increase as new users and more (perhaps longer) trips are induced from more 115 
efficiently-operated roadways. Baseline demand consistently increases after congestion is 116 
reduced with capacity expansion or operational improvements (see Cervero 2001 and Litman 117 
2014b for meta-analyses of induced travel studies). Additionally, as in-vehicle time is less 118 

stressful, travelers may be willing to tolerate slower travel times and longer travel distances, 119 
adding more congestion still. 120 

 121 
Fully autonomous vehicles may provide new mobility opportunities to those unable or unwilling 122 

to drive a vehicle themselves, especially unlicensed young people, the physically impaired, and 123 
some senior citizens. These user groups may be able to make more trips, access more 124 
destinations, and rely on modes other than shared rides, public transit, and taxi. The amount of 125 

additional mobility provided by AVs depends on mode shifts for non-drivers. Affordable, 126 
competitive trips provided by a personal or shared AV would likely improve the opportunities a 127 

non-driver could access, especially in more suburban, automobile-oriented contexts. Recognizing 128 
how different groups are affected by AV developments is important to understanding regional 129 
mobility and accessibility to jobs and resources.  130 

 131 

Altogether, impacts of autonomous vehicles are highly speculative. Future impacts depend on 132 
technological development, market reactions, and regulatory actions, making it challenging to 133 
confidently predict impacts to regional transportation systems. With so many unknown and 134 

potential effects of AVs, it is challenging to anticipate long-term effects with certainty. However, 135 
some of these impacts should be considered early on, to understand model sensitivity and 136 

develop feasible analysis boundaries. With these analyses, agencies can prepare more dynamic 137 
long-range plans, by defining and evaluating some rational futures and exploring most likely 138 

scenarios as technologies appear and mature. 139 
 140 

MODEL SCENARIOS 141 

To model potential impacts from automated vehicles in the Puget Sound region, four scenarios 142 

are considered. The following sections explore ways to model some of the impacts mentioned 143 

above and to provide guidance for other regions interested in planning for automated vehicle 144 
futures.   145 
 146 
PSRC’s activity-based travel model, called SoundCast, was applied to test the possible impacts 147 
of automated vehicles. SoundCast includes a travel demand component written in the Daysim 148 
software. SoundCast simulates individual travel choices across a typical day (PSRC 2014). These 149 
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choices include long-term choices like work location and auto-ownership, as well as shorter-term 150 

choices like mode choice and route choice. Inputs to the model include parcel-based locations of  151 
households and jobs, and highway and transit networks.  152 
 153 

The scenarios have all been modeled using the base year of 2010, to avoid forecasting market 154 
penetration scenarios or speculation on business models or technology development over time. 155 
Using the most recent base year also helps focus the analysis directly on AVs, and avoids 156 
uncertainties in future growth and changes to the transportation system. This isolation is useful to 157 
understand some model behaviors and helps develop basic guidelines for evaluating automated 158 

vehicles. As these analyses mature, future years should be evaluated for more comprehensive 159 
case studies.  160 
 161 
These scenarios explore how driverless cars can influence demand through changes in capacity, 162 

perceived travel time, parking cost, and operating cost. They are described separately below. 163 
 164 

Scenario 1: Increased Capacity  165 

 166 
“AVs use existing facilities more efficiently.” 167 

 168 
The first scenario reflects operational improvements from full or partial vehicle automation. This 169 

scenario is modeled by increasing the hourly capacity coded on roadway network links and 170 
captures one major impact of AVs on a roadway network. While it’s currently unclear what 171 
magnitude of capacity increase is likely, based on cited research a 30% increase represents a 172 

modest result from AV adoption. All freeway and major arterial capacities are increased by 30%.  173 

 174 

Scenario 2: Increased Capacity and Value of Time Changes  175 

 176 
 “Important trips are in AVs.” 177 

 178 
Scenario 2 builds upon the first scenario by assuming that, along with capacity improvements 179 
from AV use, individuals using the AVs will perceive the time in them less negatively than time 180 
spent driving in regular vehicles. The scenario envisions the point in time that AVs have only 181 
been partially adopted, and only by higher income households. As with many new technologies, 182 

the initial price will most likely only be attractive to higher income households. Considering that 183 
the current cost of self-driving GPS technology alone is around $70,000, (KPMG and CAR 184 
2012) adoption may be among high-income households for some time to come. This assumption 185 

follows existing adoption patterns of more expensive cutting-edge vehicles such as hybrid and 186 
electric vehicles. For example, Hjorthal, (2013) showed that early adopters of electric vehicles 187 
were households with high income, owning more than one car, and used mainly to complement a 188 
conventional car for commutes. Petersen and Vovsha (2005) found that higher income house-189 

holds tend to utilize newer vehicles, and among household members, the new vehicles are 190 
allocated to workers at a higher rate than retirees and school children of driving age. A similar 191 
trend might initially occur with AVs adoption. High income households might purchase one of 192 
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these vehicles, where it would be used for work and other important trips, while regular vehicles 193 

would supplement for other, less important uses.  194 
 195 
To test this scenario, modeled travel time was changed. In assignment, trip-based VOTs are 196 

reduced by 65% for highest-income households, from $24 to $15.60/hour. Then in the demand 197 
models, the automobile travel time was directly modified to be 65% of skimmed travel time in 198 
the skims for the high value of time trips. In other words, a weight of 0.65 was applied to travel 199 
time for auto trips with a high value of time. This travel time reduction reflects empirical results 200 
from the Puget Sound, comparing preference for commuter rail lines versus local bus options, 201 

where bus trips offer similar or shorter trips times, yet travelers opt for commuter rail, perhaps 202 
for a more comfortable ride, consistent scheduling, or some other un-modeled biases. The 203 
existing model accurately predicts commuter rail ridership when perceived time on commuter 204 
rail is set at 65% of time on public bus. This scenario represents a similar but not equivalent 205 

situation, in which travel time is perceived as less onerous between urban driving and sitting in a 206 
self-driving vehicle. This behavior, of course, has not been revealed or even stated by drivers and 207 

at this point is speculation based on other modes of transport.  208 
 209 

Reduction in travel time has implications throughout the modeling chain. Travel time is a 210 
variable in the following models: daily activity pattern, mode choice, destination choice, and 211 
time of day choice. Because travel times are perceived as shorter, people will be willing to travel 212 

further distances to work and school. They will also be willing to travel in more congested 213 
conditions at peak hours, and may take more trips to do non-mandatory activities like eating 214 

meals and shopping. 215 

 216 

Scenario 3: Increased Capacity, Value of Time Changes, and Reduced Parking Costs 217 

 218 
“All cars are self-driving, and none are shared.” 219 

 220 

The third scenario uses assumptions similar to the previous scenario, but takes them a step 221 
further to assume that all cars are self-driving. The scenario envisions the progression of the AVs 222 

transitioning from high-income early adopters to total market penetration. This progression 223 
would be similar to many new technologies like cell phones or the Internet that became 224 
affordable through innovation and economies of scale. Since everyone is assumed to use an AV 225 
in this scenario, travel time is reduced to 65% of skimmed travel time, for all trips, not just high-226 

VOT trips as in Scenario 2. In this scenario, all travelers, for all trip purposes, enjoy the benefits 227 
of robot chauffeurs. As in the previous scenarios, freeway and major arterial capacity is 228 
increased by 30%. 229 
 230 
A third adjustment is also made for this scenario; parking costs are reduced by half to reflect 231 
AVs self-parking in cheaper locations or better utilizing existing space (e.g., parking capacity 232 
can be increased on existing lots since no room for driver access is required, thus increasing 233 

supply of spaces and reducing costs). This change is made only in zonal parking costs and does 234 
not capture VMT generated from vehicles seeking distance parking spaces or even roaming the 235 
streets waiting for pickup commands. More detailed models could be developed to capture this 236 

behavior and could form an independent research topic.   237 
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Scenario 4: Per-mile Auto Costs Increased 238 

 239 
 “"All autos are automated, with all costs of auto use passed onto the user.” 240 
 241 
The final scenario considers a counterpoint situation in which AVs have become so common, 242 

and shared AVs systems so effective, that personal AV ownership is no longer necessary. 243 
Mobility is perhaps treated as a public utility, where all trips are provided by a taxi-like system at 244 
a set rate. In this scenario, vehicles and road use are priced by a combination of industry and 245 
government to cover infrastructure operation and maintenance costs. The scenario assumes that 246 
all costs of driving are passed on to the user. The cost components that would be included under 247 
such a scenario are: vehicle parking, vehicle and infrastructure maintenance, accidents, road 248 
construction, vehicle cost, and negative externalities like congestion, air pollution, and global 249 
warming. It is assumed that the system provides the same service as a personal automobile, but 250 

comes at a higher per-mile rate. A rate of $1.65/mile was chosen to reflect total user and system 251 
auto per mile costs and current ride-sharing taxi services. Litman (2007) estimated that the cost 252 
per auto mile in urban area during the peak period was about $1.51 per mi. Furthermore 2014 253 
per-mile price from Uber (2014) in Seattle was $1.65. The per-mile costs are a large increase 254 

from current total costs of around 60 cents/mile (AAA 2013) and much larger than marginal 255 
driving costs of 15 cents in PSRC’s model.   256 

 257 
No capacity increase is assumed in this scenario, to reflect a worst-case scenario in which the 258 
AVs provide no additional capacity (perhaps due to regulations preventing close car following, 259 

for example). Table 1 summarizes these four scenarios for quick reference.  260 
 261 

Table 1. Scenario Definitions. 262 
 263 

 264 

 265 
 266 

Scenario 1 Scenario 2 Scenario 3 Scenario 4

"AVs increase network  

capacity."

"Important trips are in 

AVs"

"Everyone who owns a car 

owns an AV."

“"All autos are automated, 

with all costs of auto use 

passed onto the user.”

30% capacity increase on 

freeways, major arterials

30% capacity increase on 

freeways, major arterials

30% capacity increase on 

freeways, major arterials

Travel time is perceived at 

65% of actual travel time 

for high value of time 

household trips (>$24/hr.)

Travel time is perceived at 

65% of actual travel time 

for all trips

50% parking cost reduction

Cost per mile is $1.65
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RESULTS 267 

The model outputs from Scenarios 1-4 are compared to the 2010 baseline to investigate the 268 

potential impacts of the new technology. Table 2 shows the scenario results for typical measures 269 

output by travel models.  All the scenarios with a capacity increase indicate increased vehicle 270 

miles travelled (VMT), ranging from around 4 % to 20%. However, only one of the three 271 

capacity-increase scenarios showed an increase in vehicle hours traveled (VHT). In the first two 272 

scenarios, the additional network capacity offsets the additional vehicle miles by allowing 273 

vehicles to travel at a faster speed.  In the third scenario, however, the reduction in perceived 274 

travel time on all trips to 65% of the actual time, along with reduced parking costs induced so 275 

much additional demand that the benefits from increase in capacity was offset. 276 

Table 2. Scenario Results, Base Year 2010, Summaries by Average Travel Day. 277 

 278 
 279 
 280 
Note that in all three of the capacity-increase scenarios the average network speed is higher than 281 
the base scenario by about one or two miles per hour. The vehicle-hours of delay are reduced by 282 

Measure Value Base 1 2 3 4

VMT Total Daily 78.7 M 81.5 M 82.6 M 94.1 M 50.8 M

% Change --- 3.6% 5.0% 19.6% -35.4%

(Versus Base)

VHT Total Daily 2.82 M 2.72 M 2.76 M 3.31 M 1.67 M

% Change --- -3.9% -2.1% 17.3% -40.9%

Trips Trips/Person 4.1 4.2 4.2 4.3 4.1

Distance Average Trip Length 6.9 7 7.2 7.9 5.8

(miles) Work Trips 12.4 12.9 12.9 20 11.5

School Trips 5.8 5.8 5.8 6.7 4.7

Delay Daily Average 846.0 700.0 727.2 996.1 350.2

(1000 hours) Freeways 288.1 201.2 218.3 338.7 56.4

Arterials 557.9 498.8 508.9 657.5 293.8

Speed Daily Average 27.9 30 29.9 28.4 30.4

(mph) Freeways 40 44.7 44.2 40.8 49.2

Arterials 22.5 23.2 23.1 22.3 24.3

Mode SOV Share 43.7 43.7 42.7 44.8 28.7

(%) Transit Share 2.6 2.7 2.7 2.4 6.2

Walk Share 8.6 8.6 8.4 6.8 13.1
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about 150,000 vehicle hours in the first scenario and 100,000 vehicle hours in the second 283 

scenario, but VHT and delay are both increased in Scenario 3 as VMT increases nearly 20%. 284 
This surge in VMT corresponds to about 150,000 hours extra delay and about 17% more vehicle 285 
hours. The increase in delay reflects the system-wide assumption of reduced perceived travel 286 

time, where people are less averse to delay and thus more willing to tolerate congestion. 287 
 288 
The additional vehicle miles result mostly from an increase in the number of trips and an 289 
increase in the length of the trips. SoundCast includes sensitivity to travel time in the daily 290 
activity pattern, exact number of tours, and intermediate stop models that predict the number of 291 

trips people take. As perceived and actual travel time is reduced, the number of trips people will 292 
take will increase because of a negative coefficient on travel time. For trip lengths, the 293 
destination choice models have a negative coefficient on travel time, so users will travel farther if 294 
the perceived travel time is reduced. In Scenario 3, average distance to work increases 295 

dramatically to 20.0 miles, from a base of 12.4 miles.  Much of this increase may be due to some 296 
curious geographical quirks of our region: with less onerous drive time, some drivers may be 297 

choosing to follow a circuitous path around Puget Sound instead of utilizing the shorter car-ferry 298 
option across the Sound into downtown Seattle. In this scenario, total vehicle miles also increase 299 

as travelers switch modes from transit and walking to single occupancy vehicles; transit shares 300 
decrease around 9% and walk shares decline 21%. 301 
 302 

Scenario 4 serves as counterpoint to Scenarios 1-3, to explore other ways in which AV could 303 
affect regional transportation. This scenario is optimistic towards AV adoption and use; shared 304 

AVs make owning a vehicle unnecessary, but travel is priced rather high (up to $1.65 per mile 305 
versus 15 cents in the base), such that many trips are suppressed or trip lengths shortened. 306 
Pessimism is assumed for operational benefits; AVs are thought to be used so widely in this 307 

scenario that operational benefits are saturated, and no capacity increases are realized. If 308 

increased per-mile costs were applied to all trips, model results suggest VMT may be reduced as 309 
much as 35% versus the base. Vehicle-hours are similarly reduced by over 40%. Though 310 
numbers of trips per person are very similar across all scenarios, Scenario 4 indicates travelers 311 

will generally opt for shorter trips – average trip lengths are down 15% versus the base and over 312 
25% less than Scenario 3, where average trip lengths are the longest of all scenarios. Scenario 4 313 

results also suggest taxi-like pricing would cut drive-alone mode shares by a third, while transit 314 
and walk modes might increase by 140% and 50%, respectively. Though some travel could be 315 

suppressed in this scenario, the overall network performs better than the base or any other 316 
scenario. Delay is less than half that in the baseline, and freeway speeds are nearly 10 mph faster 317 
than the base.   318 
 319 
Further analysis of tour lengths was performed.  Table 3 shows the percent difference in tour 320 

lengths by purpose when comparing Scenario 1 to Scenarios 3 and 4. Escort tours had the 321 
greatest sensitivity to the modeled time and cost changes among the scenarios. When comparing 322 

average escort tour lengths from the base scenario, Scenario 3 showed a 24% increase and 323 
Scenario 4 had a 51% decrease. Because escort tours involve more travelers in the same vehicle, 324 
they have a higher value of time than other tours.  This higher value of time translates to a 325 
greater sensitivity to travel time changes, and thus shorter tour lengths in Scenario 3. Scenario 326 
4’s decrease comes from sensitivity to cost per mile of these tours. 327 
 328 
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Figure 1. Percent Difference in Tour Lengths: Scenario 1 Compared to Scenarios 3 and 4 329 

 330 

 331 
 332 

Geographic Distribution of Results 333 

Aside from aggregate system performance, model results were used to provide insight into the 334 
spatial distribution of possible effects from AV. Figure 2 visualizes geographic distribution 335 

results of the most “aggressive” automated car future, Scenario 3. In this analysis, an 336 
accessibility metric called “aggregate tour mode-destination logsums,” or simply “aggregate 337 
logsums,” is used. Aggregate logsums are household-based measures of accessibility, calculated 338 

as the sum of the expectation across all possible locations, across all modes (Bowman and 339 

Bradley, 2006). The aggregate logsums are calculated separately for households grouped by 340 
income, vehicle availability, and transit accessibility, and separately by purpose. A fairly typical 341 
household type was selected for analyses in Figures 2: a medium-income household located 342 

within ¼ - ½ mile of transit, owning some vehicles, but fewer vehicles than adults. Aggregate 343 
logsums are an index measure, and do not have much meaning by themselves, but can be used to 344 

compare the differences between two scenarios. 345 
 346 

Figure 2 shows that with capacity increases and a reduction in the perception of travel time as in 347 
Scenario 3, perceived accessibility would be higher for most households, but especially higher 348 
for more remote, rural households. Note that perceived accessibility increases for all households, 349 
but especially for households in less urban areas.  Two groups were selected to analyze how 350 
different income groups would be impacted: one low income group and one high income group.  351 

For the low income group, the percent change in aggregate logsums was 8.5% between the base 352 
scenario and Scenario 3. For the high income group, the percent change in aggregate logsums 353 

was about the same at 8.9% between the base scenario and scenario 3.  The modest difference 354 
between the low and high income groups difference in logsums indicates that with the scenario 355 
as designed, low income populations experience nearly the same increase in accessibility as 356 
higher income groups. 357 

 358 
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Figure 2. Accessibility Increase: Scenario 3 minus Base. 359 

 360 

 361 

This result suggests that AVs, as modeled with assumptions in Scenario 3, would not reduce 362 
access for any specific group and would actively increase accessibility in regions away from the 363 
typically highly-accessible urban core. Scenario 3 assumes that driving is easier (increased 364 
capacity), cheaper (lower parking costs), and more enjoyable (perceived travel time decreases) 365 

for all users, leading to a jump in accessibility benefits directly through personal vehicle trips. 366 
Though many Puget Sound residents would enjoy higher accessibility in this scenario, total VMT 367 

climbs nearly 20%, possibly compromising the region’s goals of reducing greenhouse gas 368 
emissions and containing growth into existing urban areas. Figure 3 shows how these VMT 369 

increases are dispersed across the region.  370 

 371 
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 372 

Figure 3. Scenario 3, Estimated Changes in Average Daily VMT per Person over base 373 

 374 

 375 

This result indicates that average VMT per person in nearly all zones would increase, with the 376 

most extreme increases occurring in outlying areas, and even in some core zones of central 377 
Seattle and Bellevue. Zones decreasing in VMT are generally sparsely-populated with few 378 
samples to properly estimate. Improving regional mobility is one of PSRC’s goals, but such 379 
improvements made through increased personal vehicle trips may be conflicting with 380 

environmental and land-use targets.  381 

DISCUSSION and RECOMMENDATIONS 382 

Planning Implications 383 

These results imply that AVs could both help and hinder PSRC’s policy goals. Speed and 384 
capacity increases may improve regional mobility, but they also could induce additional demand, 385 
leading to more VMT, and hence greater greenhouse gas emissions. If, on the other hand, a 386 

greater share of AVs are electric than would have been otherwise, greenhouse gas emissions 387 
could possibly fall. Reducing perceived travel time may provide a more enjoyable traveling 388 
experience, but could facilitate longer trips and more VMT. The model runs show that 389 
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improvements in vehicle hours of delay from capacity expansion can easily be offset by the 390 

reduction in perceived time. The amount of additional network capacity this technology can 391 
provide is unknown, as are behavioral reactions of travelers. These analyses simply show that a 392 
range of reasonable assumptions about AV adoption could have quite different impacts on 393 

regional transportation. For example, if self-driving cars are priced per mile, both vehicle miles 394 
travelled and vehicle hours travelled could be greatly reduced, by as much as 20 and 30%, 395 
respectively, with SOV shares declining 40% and transit shares almost doubling. Conversely, 396 
model assumptions in the first three scenarios indicate potential for much more VMT and delay, 397 
with more people carried in SOVs, generally worse or equivalent network performance, but 398 

higher mobility overall.   399 
 400 
Self-driving vehicle adoption impacts are addressed in this paper from the perspective of PSRC’s 401 
long-range plan goals of mobility, accessibility, and congestion impacts, but future research 402 

should explore potential safety, emissions, and land use changes. Many simplifying assumptions 403 
were used to isolate and test network and behavioral changes potentially associated with 404 

automated technology development. However, if AV use does dramatically change regional 405 
VMT, trip lengths, and mode shifts, it follows that land uses may shift dramatically as well. 406 

Understanding these built environment changes will be very important in planning for future 407 
impacts of AV technology.  408 
 409 

Modeling Implications 410 

Some improvements to this study’s methodology are achievable now, such as testing future-year 411 

settings and linking the travel and land use models. These are perhaps the next logical next steps 412 
in more detailed AV analyses, since changes in accessibility may be quite large and those 413 
accessibility changes would impact land use development patterns.  414 

 415 

More importantly, existing tools are demonstrably not sufficient for expressing the full range of 416 
possibilities that automated vehicles may present. This study makes oversimplifications, such as 417 
using a present-year land use assumptions and assuming broad AV costs and user values of time. 418 

The model was estimated and calibrated against data that represents today’s network reality, 419 
which is far outside of the reality that may exist with wide AV adoption. The challenges faced in 420 

modeling AV scenarios highlight limitations of today’s tools in addressing this technology. 421 
Many modeling improvements are considered below. 422 

 423 
 424 
The future business model for shared AVs is entirely opaque. At a minimum, this could be 425 
represented more directly with a top-tier taxi mode, which SoundCast currently lacks. Most 426 
recent travel surveys indicate growing shares for taxi and taxi-like trips from ridesharing 427 

services. Including a taxi mode would allow modelers to tweak performance and prices specific 428 
to shared AVs. This would go a long way toward preparing our model for outcomes where many 429 

of us may have robotic chauffeurs.  430 
 431 
In activity-based models, household-owned AVs could be represented as a separate mode from 432 
non-automated vehicles with their own modal constants and variables.  Representing AVs as a 433 
separate mode may be necessary if policy makers would like to consider separated lanes for 434 
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AVs. As with high-occupancy vehicles and toll links, AVs may need to be modeled using a 435 

separate set of user classes with unique values of time and network link attributes. 436 
 437 
The reduction in perceived travel time in AVs would be better modeled by attributing the 438 

improvement in experience of travel time to actual measurable variables, as has been researched 439 
with transit (Outwater, 2013).  In mode and destination choice models, the stages of automation 440 
could be a set of zero-one variables for the AV mode; assuming that the AV mode would 441 
become more attractive with more automation and that with more automation, travel impedance 442 
variables would have lower coefficients. 443 

 444 
Currently, modelers lack the evidence to add AV-related alternatives and variables into travel 445 
demand models. Because these vehicles do not yet exist but modelers need to incorporate their 446 
possible impacts on travel demand, the most straightforward way to understand behavior would 447 

be to conduct a stated preference survey. 448 
 449 

A stated preference survey about travel behavior using AVs should try to answer some of the 450 
following questions: 451 

 452 

 How much would different types of people be willing to purchase different levels of 453 
automation and for what price? 454 

 Who would prefer to use the AVs as a shared service, and forgo car ownership? 455 

 How will people perceive and value their time differently in AVs? 456 

 Would people anticipate moving farther away from work? 457 

 Would businesses choose to locate farther from the city center? 458 

 What aspects of the AVs would cause people change their behavior most such as ability 459 
to work, avoiding congestion, or safety? 460 

 461 

Stepping further back and thinking about more than just variables and their coefficients, there are 462 
some real shifts in how people perceive travel even today that our models simply don’t capture. 463 

Multitasking (e.g. reading/emailing on a smartphone while on the bus), the effect of ingrained 464 
habits and “lifestyle choices” (e.g., a person who really loves driving their luxury car, or another 465 
person who would never consider driving to work even if it had free parking) need to be 466 

incorporated in the next generation of models.  Those types of high-level differences will be 467 
amplified when a disruptive technology like AVs are introduced. 468 
 469 

Closing Remarks 470 

For modelers and policymakers alike it’s important to remember that, when presented with 471 
automated vehicle technology, people are still going to behave based on the options available to 472 

them and on the constraints they face in their daily lives. We have tried to lay out reasonable (or 473 
at least conceivable) scenarios in this study, but the future may be more different than we’ve 474 
envisioned. That possibility makes it even more critical that we improve our tools now to support 475 
the policymakers and planners who will have to grapple with this new technology.  476 

 477 
This research is just a starting point. We hope to continue the discussion as we sharpen our 478 
predictive tools in the coming years.  479 
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